Dans le cadre d'un programme que j'écris, j'ai besoin de résoudre une équation cubique exactement (plutôt que d'utiliser un chercheur de racine numérique): J'essaie d'utiliser les équations de ici . Cependant, considérez le code suivant (c'est python mais c'est un code assez générique): p> mais la sortie est la suivante: p> q = -0.266666666667
r = 0.07
delta = -0.014062962963
s [real] = 0.516397779494
t [real] = 0.516397779494
x1 = 1.03279555899
should be zero: 0.135412149064
5 Réponses :
J'ai regardé l'article Wikipedia et votre programme. P>
J'ai également résolu l'équation en utilisant Wolfram Alpha et les résultats là-bas ne correspondent pas à ce que vous obtenez. < / p>
Je voudrais juste passer par votre programme à chaque étape, utilisez beaucoup d'énoncés d'impression et obtenez chaque résultat intermédiaire. Puis passez avec une calculatrice et faites-le vous-même. P>
Je ne trouve pas ce qui se passe, mais où les calculs de votre main et le programme divergent sont un bon endroit pour regarder. P>
Je suis passé très soigneusement et j'ai essayé d'utiliser une calculatrice, et je suis plutôt confiant que je ne fais rien de mal. Cela pourrait-il être un problème avec l'article Wikipedia?
Voir la réponse de A. Rex. Comme on dit, "Eh bien, il y a ton problème!"
Notation de Wikipedia J'ai apporté ces modifications à votre code et cela a fonctionné pour moi: p> (bien sûr, (rho ^ (1/3), theta / 3) code> ne signifie pas que rho ^ (1/3) code> est la partie réelle et theta / 3 code> est la partie imaginaire. Il s'agit plutôt de coordonnées polaires. Ainsi, si vous voulez la partie réelle, vous prendriez rho ^ (1/3) * cos (theta / 3) code>. s_real = t_real code> ici car cos code> est même.) p> p >
Le voilà. Je ne peux pas croire que je lu à travers cela plusieurs fois.
Merci beaucoup d'avoir repéré ça! J'allais fou essayant de comprendre pourquoi ça ne marcherait pas.
Voici la solution d'A. REX en JavaScript:
a = 1.0;
b = 0.0;
c = 0.2 - 1.0;
d = -0.7 * 0.2;
q = (3*a*c - Math.pow(b, 2)) / (9 * Math.pow(a, 2));
r = (9*a*b*c - 27*Math.pow(a, 2)*d - 2*Math.pow(b, 3)) / (54*Math.pow(a, 3));
console.log("q = "+q);
console.log("r = "+r);
delta = Math.pow(q, 3) + Math.pow(r, 2);
console.log("delta = "+delta);
// here delta is less than zero so we use the second set of equations from the article:
rho = Math.pow((-Math.pow(q, 3)), 0.5);
theta = Math.acos(r/rho);
// For x1 the imaginary part is unimportant since it cancels out
s_real = Math.pow(rho, (1./3.)) * Math.cos( theta/3);
t_real = Math.pow(rho, (1./3.)) * Math.cos(-theta/3);
console.log("s [real] = "+s_real);
console.log("t [real] = "+t_real);
x1 = s_real + t_real - b / (3. * a);
console.log("x1 = "+x1);
console.log("should be zero: "+(a*Math.pow(x1, 3)+b*Math.pow(x1, 2)+c*x1+d));
Voir autant que vous utilisez Math.Pow beaucoup, vous pouvez considérer cette extension: numéro.pototype.pow = fonction (a) {retour math.pow (ceci, a); }; 2..PUI (3) // 8 CODE>
Ici, je mets une équation cubique (avec coefficients complexes) solveur.
#include <string>
#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;
#define PI 3.141592
long double complex_multiply_r(long double xr, long double xi, long double yr, long double yi) {
return (xr * yr - xi * yi);
}
long double complex_multiply_i(long double xr, long double xi, long double yr, long double yi) {
return (xr * yi + xi * yr);
}
long double complex_triple_multiply_r(long double xr, long double xi, long double yr, long double yi, long double zr, long double zi) {
return (xr * yr * zr - xi * yi * zr - xr * yi * zi - xi * yr * zi);
}
long double complex_triple_multiply_i(long double xr, long double xi, long double yr, long double yi, long double zr, long double zi) {
return (xr * yr * zi - xi * yi * zi + xr * yi * zr + xi * yr * zr);
}
long double complex_quadraple_multiply_r(long double xr, long double xi, long double yr, long double yi, long double zr, long double zi, long double wr, long double wi) {
long double z1r, z1i, z2r, z2i;
z1r = complex_multiply_r(xr, xi, yr, yi);
z1i = complex_multiply_i(xr, xi, yr, yi);
z2r = complex_multiply_r(zr, zi, wr, wi);
z2i = complex_multiply_i(zr, zi, wr, wi);
return (complex_multiply_r(z1r, z1i, z2r, z2i));
}
long double complex_quadraple_multiply_i(long double xr, long double xi, long double yr, long double yi, long double zr, long double zi, long double wr, long double wi) {
long double z1r, z1i, z2r, z2i;
z1r = complex_multiply_r(xr, xi, yr, yi);
z1i = complex_multiply_i(xr, xi, yr, yi);
z2r = complex_multiply_r(zr, zi, wr, wi);
z2i = complex_multiply_i(zr, zi, wr, wi);
return (complex_multiply_i(z1r, z1i, z2r, z2i));
}
long double complex_divide_r(long double xr, long double xi, long double yr, long double yi) {
return ((xr * yr + xi * yi) / (yr * yr + yi * yi));
}
long double complex_divide_i(long double xr, long double xi, long double yr, long double yi) {
return ((-xr * yi + xi * yr) / (yr * yr + yi * yi));
}
long double complex_root_r(long double xr, long double xi) {
long double r, theta;
r = sqrt(xr*xr + xi*xi);
if (r != 0.0) {
if (xr >= 0 && xi >= 0) {
theta = atan(xi / xr);
}
else if (xr < 0 && xi >= 0) {
theta = PI - abs(atan(xi / xr));
}
else if (xr < 0 && xi < 0) {
theta = PI + abs(atan(xi / xr));
}
else {
theta = 2.0 * PI + atan(xi / xr);
}
return (sqrt(r) * cos(theta / 2.0));
}
else {
return 0.0;
}
}
long double complex_root_i(long double xr, long double xi) {
long double r, theta;
r = sqrt(xr*xr + xi*xi);
if (r != 0.0) {
if (xr >= 0 && xi >= 0) {
theta = atan(xi / xr);
}
else if (xr < 0 && xi >= 0) {
theta = PI - abs(atan(xi / xr));
}
else if (xr < 0 && xi < 0) {
theta = PI + abs(atan(xi / xr));
}
else {
theta = 2.0 * PI + atan(xi / xr);
}
return (sqrt(r) * sin(theta / 2.0));
}
else {
return 0.0;
}
}
long double complex_cuberoot_r(long double xr, long double xi) {
long double r, theta;
r = sqrt(xr*xr + xi*xi);
if (r != 0.0) {
if (xr >= 0 && xi >= 0) {
theta = atan(xi / xr);
}
else if (xr < 0 && xi >= 0) {
theta = PI - abs(atan(xi / xr));
}
else if (xr < 0 && xi < 0) {
theta = PI + abs(atan(xi / xr));
}
else {
theta = 2.0 * PI + atan(xi / xr);
}
return (pow(r, 1.0 / 3.0) * cos(theta / 3.0));
}
else {
return 0.0;
}
}
long double complex_cuberoot_i(long double xr, long double xi) {
long double r, theta;
r = sqrt(xr*xr + xi*xi);
if (r != 0.0) {
if (xr >= 0 && xi >= 0) {
theta = atan(xi / xr);
}
else if (xr < 0 && xi >= 0) {
theta = PI - abs(atan(xi / xr));
}
else if (xr < 0 && xi < 0) {
theta = PI + abs(atan(xi / xr));
}
else {
theta = 2.0 * PI + atan(xi / xr);
}
return (pow(r, 1.0 / 3.0) * sin(theta / 3.0));
}
else {
return 0.0;
}
}
void main() {
long double a[2], b[2], c[2], d[2], minusd[2];
long double r, theta;
cout << "ar?";
cin >> a[0];
cout << "ai?";
cin >> a[1];
cout << "br?";
cin >> b[0];
cout << "bi?";
cin >> b[1];
cout << "cr?";
cin >> c[0];
cout << "ci?";
cin >> c[1];
cout << "dr?";
cin >> d[0];
cout << "di?";
cin >> d[1];
if (b[0] == 0.0 && b[1] == 0.0 && c[0] == 0.0 && c[1] == 0.0) {
if (d[0] == 0.0 && d[1] == 0.0) {
cout << "x1r: 0.0 \n";
cout << "x1i: 0.0 \n";
cout << "x2r: 0.0 \n";
cout << "x2i: 0.0 \n";
cout << "x3r: 0.0 \n";
cout << "x3i: 0.0 \n";
}
else {
minusd[0] = -d[0];
minusd[1] = -d[1];
r = sqrt(minusd[0]*minusd[0] + minusd[1]*minusd[1]);
if (minusd[0] >= 0 && minusd[1] >= 0) {
theta = atan(minusd[1] / minusd[0]);
}
else if (minusd[0] < 0 && minusd[1] >= 0) {
theta = PI - abs(atan(minusd[1] / minusd[0]));
}
else if (minusd[0] < 0 && minusd[1] < 0) {
theta = PI + abs(atan(minusd[1] / minusd[0]));
}
else {
theta = 2.0 * PI + atan(minusd[1] / minusd[0]);
}
cout << "x1r: " << pow(r, 1.0 / 3.0) * cos(theta / 3.0) << "\n";
cout << "x1i: " << pow(r, 1.0 / 3.0) * sin(theta / 3.0) << "\n";
cout << "x2r: " << pow(r, 1.0 / 3.0) * cos((theta + 2.0 * PI) / 3.0) << "\n";
cout << "x2i: " << pow(r, 1.0 / 3.0) * sin((theta + 2.0 * PI) / 3.0) << "\n";
cout << "x3r: " << pow(r, 1.0 / 3.0) * cos((theta + 4.0 * PI) / 3.0) << "\n";
cout << "x3i: " << pow(r, 1.0 / 3.0) * sin((theta + 4.0 * PI) / 3.0) << "\n";
}
}
else {
// find eigenvalues
long double term0[2], term1[2], term2[2], term3[2], term3buf[2];
long double first[2], second[2], second2[2], third[2];
term0[0] = -4.0 * complex_quadraple_multiply_r(a[0], a[1], c[0], c[1], c[0], c[1], c[0], c[1]);
term0[1] = -4.0 * complex_quadraple_multiply_i(a[0], a[1], c[0], c[1], c[0], c[1], c[0], c[1]);
term0[0] += complex_quadraple_multiply_r(b[0], b[1], b[0], b[1], c[0], c[1], c[0], c[1]);
term0[1] += complex_quadraple_multiply_i(b[0], b[1], b[0], b[1], c[0], c[1], c[0], c[1]);
term0[0] += -4.0 * complex_quadraple_multiply_r(b[0], b[1], b[0], b[1], b[0], b[1], d[0], d[1]);
term0[1] += -4.0 * complex_quadraple_multiply_i(b[0], b[1], b[0], b[1], b[0], b[1], d[0], d[1]);
term0[0] += 18.0 * complex_quadraple_multiply_r(a[0], a[1], b[0], b[1], c[0], c[1], d[0], d[1]);
term0[1] += 18.0 * complex_quadraple_multiply_i(a[0], a[1], b[0], b[1], c[0], c[1], d[0], d[1]);
term0[0] += -27.0 * complex_quadraple_multiply_r(a[0], a[1], a[0], a[1], d[0], d[1], d[0], d[1]);
term0[1] += -27.0 * complex_quadraple_multiply_i(a[0], a[1], a[0], a[1], d[0], d[1], d[0], d[1]);
term1[0] = -27.0 * complex_triple_multiply_r(a[0], a[1], a[0], a[1], d[0], d[1]);
term1[1] = -27.0 * complex_triple_multiply_i(a[0], a[1], a[0], a[1], d[0], d[1]);
term1[0] += 9.0 * complex_triple_multiply_r(a[0], a[1], b[0], b[1], c[0], c[1]);
term1[1] += 9.0 * complex_triple_multiply_i(a[0], a[1], b[0], b[1], c[0], c[1]);
term1[0] -= 2.0 * complex_triple_multiply_r(b[0], b[1], b[0], b[1], b[0], b[1]);
term1[1] -= 2.0 * complex_triple_multiply_i(b[0], b[1], b[0], b[1], b[0], b[1]);
term2[0] = 3.0 * complex_multiply_r(a[0], a[1], c[0], c[1]);
term2[1] = 3.0 * complex_multiply_i(a[0], a[1], c[0], c[1]);
term2[0] -= complex_multiply_r(b[0], b[1], b[0], b[1]);
term2[1] -= complex_multiply_i(b[0], b[1], b[0], b[1]);
term3[0] = complex_multiply_r(term1[0], term1[1], term1[0], term1[1]);
term3[1] = complex_multiply_i(term1[0], term1[1], term1[0], term1[1]);
term3[0] += 4.0 * complex_triple_multiply_r(term2[0], term2[1], term2[0], term2[1], term2[0], term2[1]);
term3[1] += 4.0 * complex_triple_multiply_i(term2[0], term2[1], term2[0], term2[1], term2[0], term2[1]);
term3buf[0] = term3[0];
term3buf[1] = term3[1];
term3[0] = complex_root_r(term3buf[0], term3buf[1]);
term3[1] = complex_root_i(term3buf[0], term3buf[1]);
if (term0[0] == 0.0 && term0[1] == 0.0 && term1[0] == 0.0 && term1[1] == 0.0) {
cout << "x1r: " << -pow(d[0], 1.0 / 3.0) << "\n";
cout << "x1i: " << 0.0 << "\n";
cout << "x2r: " << -pow(d[0], 1.0 / 3.0) << "\n";
cout << "x2i: " << 0.0 << "\n";
cout << "x3r: " << -pow(d[0], 1.0 / 3.0) << "\n";
cout << "x3i: " << 0.0 << "\n";
}
else {
// eigenvalue1
first[0] = complex_divide_r(complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1]), 3.0 * pow(2.0, 1.0 / 3.0) * a[0], 3.0 * pow(2.0, 1.0 / 3.0) * a[1]);
first[1] = complex_divide_i(complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1]), 3.0 * pow(2.0, 1.0 / 3.0) * a[0], 3.0 * pow(2.0, 1.0 / 3.0) * a[1]);
second[0] = complex_divide_r(pow(2.0, 1.0 / 3.0) * term2[0], pow(2.0, 1.0 / 3.0) * term2[1], 3.0 * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
second[1] = complex_divide_i(pow(2.0, 1.0 / 3.0) * term2[0], pow(2.0, 1.0 / 3.0) * term2[1], 3.0 * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
third[0] = complex_divide_r(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
third[1] = complex_divide_i(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
cout << "x1r: " << first[0] - second[0] - third[0] << "\n";
cout << "x1i: " << first[1] - second[1] - third[1] << "\n";
// eigenvalue2
first[0] = complex_divide_r(complex_multiply_r(1.0, -sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), complex_multiply_i(1.0, -sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 6.0 * pow(2.0, 1.0 / 3.0) * a[0], 6.0 * pow(2.0, 1.0 / 3.0) * a[1]);
first[1] = complex_divide_i(complex_multiply_r(1.0, -sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), complex_multiply_i(1.0, -sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 6.0 * pow(2.0, 1.0 / 3.0) * a[0], 6.0 * pow(2.0, 1.0 / 3.0) * a[1]);
second[0] = complex_divide_r(complex_multiply_r(1.0, sqrt(3.0), term2[0], term2[1]), complex_multiply_i(1.0, sqrt(3.0), term2[0], term2[1]), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
second[1] = complex_divide_i(complex_multiply_r(1.0, sqrt(3.0), term2[0], term2[1]), complex_multiply_i(1.0, sqrt(3.0), term2[0], term2[1]), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
third[0] = complex_divide_r(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
third[1] = complex_divide_i(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
cout << "x2r: " << -first[0] + second[0] - third[0] << "\n";
cout << "x2i: " << -first[1] + second[1] - third[1] << "\n";
// eigenvalue3
first[0] = complex_divide_r(complex_multiply_r(1.0, sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), complex_multiply_i(1.0, sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 6.0 * pow(2.0, 1.0 / 3.0) * a[0], 6.0 * pow(2.0, 1.0 / 3.0) * a[1]);
first[1] = complex_divide_i(complex_multiply_r(1.0, sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), complex_multiply_i(1.0, sqrt(3.0), complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 6.0 * pow(2.0, 1.0 / 3.0) * a[0], 6.0 * pow(2.0, 1.0 / 3.0) * a[1]);
second[0] = complex_divide_r(complex_multiply_r(1.0, -sqrt(3.0), term2[0], term2[1]), complex_multiply_i(1.0, -sqrt(3.0), term2[0], term2[1]), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
second[1] = complex_divide_i(complex_multiply_r(1.0, -sqrt(3.0), term2[0], term2[1]), complex_multiply_i(1.0, -sqrt(3.0), term2[0], term2[1]), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_r(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])), 3.0 * pow(2.0, 2.0 / 3.0) * complex_multiply_i(a[0], a[1], complex_cuberoot_r(term3[0] + term1[0], term3[1] + term1[1]), complex_cuberoot_i(term3[0] + term1[0], term3[1] + term1[1])));
third[0] = complex_divide_r(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
third[1] = complex_divide_i(b[0], b[1], 3.0 * a[0], 3.0 * a[1]);
cout << "x3r: " << -first[0] + second[0] - third[0] << "\n";
cout << "x3i: " << -first[1] + second[1] - third[1] << "\n";
}
}
int end;
cin >> end;
}
Bienvenue dans le débordement de la pile! Bien que ce code de code puisse résoudre la question, y compris une explication aide vraiment pour améliorer la qualité de votre message. N'oubliez pas que vous répondez à la question pour les lecteurs à l'avenir, pas seulement la personne qui demande maintenant! S'il vous plaît Modifier Votre réponse Pour ajouter une explication et donner une indication de quelles limitations et hypothèses s'appliquent.
Si quelqu'un a besoin de code C ++, vous pouvez utiliser cette pièce de OpenCV: P>
https://github.com/opencv /opencv/blob/master/modules/calib3d/src/polynom_solver.cpp p>
Non! Toute langue informatique peut répondre avec une algorithmique correcte.
Solve_deg3 pour A = 3.0, B = 3.0, C = 1,0, D = 1.0 donne un résultat incorrect = -Nan (il devrait être -1,0)
Avez-vous besoin de la racine imaginaire?
J'ai eu du code de travail résolu pour les véritables racines de vb.net et je sais que cela a fonctionné ... Je vais essayer de voir si je peux le trouver parmi mes dossiers et poster cela, la Tomarrow (aucun accès net à la maison).
Pour la solution X1 dans l'article Wikipedia, vous ajoutez S et T. s a une partie imaginaire Theta / 3, et t a une partie imaginaire -theta / 3, donc pour cette solution, les parties imaginaires doivent annuler exactement.
Pouvez-vous être sûr que, pour ces coefficients, la partie imaginaire est sans importance? Après tout
delta code> n'est pas zéro.Je ne dis pas que la partie imaginaire est sans importance, je dis que S + T est réel quelles que soient les pièces imaginaires pour s et t (dans le delta <0 cas).
Un commentaire est confus / faux: # ici delta est zéro <- devrait être "moins de zéro"
Merci et désolé pour la confusion - fixe